Python Statsd Documentation
Release 1.4

Rick van Hattem

April 14, 2012

CONTENTS

Python Statsd Documentation, Release 1.4

Contents:

CONTENTS 1

Python Statsd Documentation, Release 1.4

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

statsd is a client for Etsy’s statsd server, a front end/proxy for the Graphite stats collection and graphing server.
¢ Graphite
— http://graphite.wikidot.com
* Statsd
— code: https://github.com/etsy/statsd

— blog post: http://codeascraft.etsy.com/2011/02/15/measure-anything-measure-everything/

http://graphite.wikidot.com
https://github.com/etsy/statsd
http://codeascraft.etsy.com/2011/02/15/measure-anything-measure-everything/

Python Statsd Documentation, Release 1.4

4 Chapter 1. Introduction

CHAPTER
TWO

INSTALL

To install simply execute python setup.py install. If you want to run the tests first, run python setup.py nosetests

Python Statsd Documentation, Release 1.4

6 Chapter 2. Install

CHAPTER
THREE

USAGE

To get started real quick, just try something like this:

3.1 Basic Usage

3.1.1 Timers

>>> import statsd

>>>

>>> timer = statsd.Timer ('MyApplication’)
>>>

>>> timer.start ()

>>> # do something here

>>> timer.stop (’ SomeTimer’)

3.1.2 Counters

>>> import statsd

>>>

>>> counter = statsd.Counter ('MyApplication’)
>>> # do something here

>>> counter += 1

3.2 Advanced Usage

>>> import statsd
>>>
>>> # Open a connection to ‘server' on port ‘'1234"' with a ‘50%' sample rate
>>> statsd_connection = statsd.Connection (
name=’"server’,
port=1234,
sample_rate=0.5,

>>>

>>> # Create a client for this application
>>> statsd_client = statsd.Client(__name_ , statsd_connection)
>>>

Python Statsd Documentation, Release 1.4

>>> class SomeClass (object) :
def _ init_ (self):
Create a client specific for this class
self.statsd_client = statsd_client.get_client (
self.__class_ _._ name_)

def do_something(self):
Create a ‘timer' client
timer = self.statsd_client.get_client (class_=statsd.Timer)

start the measurement
timer.start ()

do something
timer.interval (' intermediate_value’)

do something else
timer.stop (' total’)

8 Chapter 3. Usage

CHAPTER
FOUR

STATSD MODULE REFERENCE

Contents:

4.1 statsd.connection

class statsd.connection.Connection (host=None, port=None, sample_rate=None)
Statsd Connection

Parameters
¢ host — The statsd host to connect to, defaults to localhost
* port — The statsd port to connect to, defaults to 8125
» sample_rate — The sample rate, defaults to / (meaning always)

send (data, sample_rate=None)
Send the data over UDP while taking the sample_rate in account

The sample rate should be a number between 0 and / which indicates the probability that a message will
be sent. The sample_rate is also communicated to statsd so it knows what multiplier to use.

4.2 statsd.client

class statsd.client .Client (name, connection=None)
Statsd Client Object

Parameters
e task_id — see name.
e task_id —see connection.

connection = None
The Connection to use, creates a new connection if no connection is given

get_client (name=None, class_=None)
Get a (sub-)client with a separate namespace This way you can create a global/app based client with
subclients per class/function

Parameters

* name — The name to use, if the name for this client was spam and the name argument is
eggs than the resulting name will be spam.eggs

Python Statsd Documentation, Release 1.4

* class — The Client subclass to use (e.g. Timer or Counter)

name = None
The name of the client, everything sent from this client will be prefixed by name

4.3 statsd.timer

class statsd.timer.Timer (name, connection=None)
Statsd Timer Object

Additional documentation is available at the parent class Client

>>> timer = Timer ('application_name’)
>>> timer.start ()

>>> # do something

>>> timer.stop (' executed_action’)

decorate (function_or_name)
Decorate a function to time the execution

The method can be called with or without a name. If no name is given the function defaults to the name of
the function.

Parameters function_or_name — The name to post to or the function to wrap

>>> from statsd import Timer
>>> timer = Timer (’application_name’)
>>>
>>> @timer.decorate
def some_function() :
resulting timer name: application_name.some_function
pass
>>>
>>> @timer.decorate ('my_timer’)
def some_function() :
resulting timer name: application_name.my_timer
pass

intermediate (subname)
Send the time that has passed since our last measurement

Parameters subname — The subname to report the data to (appended to the client name)

send (subname, delta)
Send the data to statsd via self.connection

Parameters
* subname — The subname to report the data to (appended to the client name)
¢ delta — The time delta (time.time() - time.time()) to report

start ()
Start the timer and store the start time, this can only be executed once per instance

stop (subname="total’)
Stop the timer and send the total since start() was run

Parameters subname — The subname to report the data to (appended to the client name)

10 Chapter 4. Statsd Module Reference

Python Statsd Documentation, Release 1.4

4.4 statsd.counter

class statsd.counter.Counter (name, connection=None)
Class to implement a statd counter

Additional documentation is available at the parent class C1ient

The values can be incremented/decremented by using either the increment() and decrement() methods or by
simply adding/deleting from the object.

>>> counter = Counter (’application_name’)
>>> counter += 10

>>> counter = Counter (’application_name’)
>>> counter -= 10

decrement (subname=None, delta=1)
Decrement the counter with delta

Parameters
* subname — The subname to report the data to (appended to the client name)
¢ delta — The delta to remove from the counter
>>> counter = Counter (’application_name’)

(
(
(
(

>>> counter.decrement
>>> counter.decrement
>>> counter.decrement

"counter_name’, 10)
delta=10)
"counter_name’)

increment (subname=None, delta=1)
Increment the counter with delta

Parameters
* subname — The subname to report the data to (appended to the client name)

¢ delta — The delta to add to the counter

delta=10)
"counter_name’)

>>> counter = Counter (’application_name’)
>>> counter.increment (' counter_name’, 10)
>>> counter.increment (

(

>>> counter.increment

4.4. statsd.counter 11

Python Statsd Documentation, Release 1.4

12 Chapter 4. Statsd Module Reference

CHAPTER
FIVE

INDICES AND TABLES

13

Python Statsd Documentation, Release 1.4

14 Chapter 5. Indices and tables

PYTHON MODULE INDEX

S

statsd.client, ??
statsd.connection, ??
statsd.counter, ??
statsd.timer, ??

15

