Python Statsd Documentation
Release 1.4

Rick van Hattem

April 14, 2012






CONTENTS







Python Statsd Documentation, Release 1.4

Contents:

CONTENTS 1



Python Statsd Documentation, Release 1.4

2 CONTENTS



CHAPTER
ONE

INTRODUCTION

statsd is a client for Etsy’s statsd server, a front end/proxy for the Graphite stats collection and graphing server.
¢ Graphite
— http://graphite.wikidot.com
* Statsd
— code: https://github.com/etsy/statsd

— blog post: http://codeascraft.etsy.com/2011/02/15/measure-anything-measure-everything/



http://graphite.wikidot.com
https://github.com/etsy/statsd
http://codeascraft.etsy.com/2011/02/15/measure-anything-measure-everything/
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CHAPTER
TWO

INSTALL

To install simply execute python setup.py install. If you want to run the tests first, run python setup.py nosetests
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CHAPTER
THREE

USAGE

To get started real quick, just try something like this:

3.1 Basic Usage

3.1.1 Timers

>>> import statsd

>>>

>>> timer = statsd.Timer ('MyApplication’)
>>>

>>> timer.start ()

>>> # do something here

>>> timer.stop (’ SomeTimer’)

3.1.2 Counters

>>> import statsd

>>>

>>> counter = statsd.Counter ('MyApplication’)
>>> # do something here

>>> counter += 1

3.2 Advanced Usage

>>> import statsd
>>>
>>> # Open a connection to ‘server' on port ‘'1234"' with a ‘50%' sample rate
>>> statsd_connection = statsd.Connection (
name=’"server’,
port=1234,
sample_rate=0.5,

>>>

>>> # Create a client for this application
>>> statsd_client = statsd.Client(__name_ , statsd_connection)
>>>
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>>> class SomeClass (object) :
def _ init_ (self):
# Create a client specific for this class
self.statsd_client = statsd_client.get_client (
self.__class_ _._ name_ )

def do_something(self):
# Create a ‘timer' client
timer = self.statsd_client.get_client (class_=statsd.Timer)

# start the measurement
timer.start ()

# do something
timer.interval (' intermediate_value’)

# do something else
timer.stop (' total’)
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CHAPTER
FOUR

STATSD MODULE REFERENCE

Contents:

4.1 statsd.connection

class statsd.connection.Connection (host=None, port=None, sample_rate=None)
Statsd Connection

Parameters
¢ host — The statsd host to connect to, defaults to localhost
* port — The statsd port to connect to, defaults to 8125
» sample_rate — The sample rate, defaults to / (meaning always)

send (data, sample_rate=None)
Send the data over UDP while taking the sample_rate in account

The sample rate should be a number between 0 and / which indicates the probability that a message will
be sent. The sample_rate is also communicated to statsd so it knows what multiplier to use.

4.2 statsd.client

class statsd.client .Client (name, connection=None)
Statsd Client Object

Parameters
e task_id — see name.
e task_id —see connection.

connection = None
The Connection to use, creates a new connection if no connection is given

get_client (name=None, class_=None)
Get a (sub-)client with a separate namespace This way you can create a global/app based client with
subclients per class/function

Parameters

* name — The name to use, if the name for this client was spam and the name argument is
eggs than the resulting name will be spam.eggs
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* class — The Client subclass to use (e.g. Timer or Counter)

name = None
The name of the client, everything sent from this client will be prefixed by name

4.3 statsd.timer

class statsd.timer.Timer (name, connection=None)
Statsd Timer Object

Additional documentation is available at the parent class Client

>>> timer = Timer ('application_name’)
>>> timer.start ()

>>> # do something

>>> timer.stop (' executed_action’)

decorate (function_or_name)
Decorate a function to time the execution

The method can be called with or without a name. If no name is given the function defaults to the name of
the function.

Parameters function_or_name — The name to post to or the function to wrap

>>> from statsd import Timer
>>> timer = Timer (’application_name’)
>>>
>>> @timer.decorate
def some_function() :
# resulting timer name: application_name.some_function
pass
>>>
>>> @timer.decorate ('my_timer’)
def some_function() :
# resulting timer name: application_name.my_timer
pass

intermediate (subname)
Send the time that has passed since our last measurement

Parameters subname — The subname to report the data to (appended to the client name)

send (subname, delta)
Send the data to statsd via self.connection

Parameters
* subname — The subname to report the data to (appended to the client name)
¢ delta — The time delta (time.time() - time.time()) to report

start ()
Start the timer and store the start time, this can only be executed once per instance

stop (subname="total’)
Stop the timer and send the total since start() was run

Parameters subname — The subname to report the data to (appended to the client name)

10 Chapter 4. Statsd Module Reference
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4.4 statsd.counter

class statsd.counter.Counter (name, connection=None)
Class to implement a statd counter

Additional documentation is available at the parent class C1ient

The values can be incremented/decremented by using either the increment() and decrement() methods or by
simply adding/deleting from the object.

>>> counter = Counter (’application_name’)
>>> counter += 10

>>> counter = Counter (’application_name’)
>>> counter -= 10

decrement (subname=None, delta=1)
Decrement the counter with delta

Parameters
* subname — The subname to report the data to (appended to the client name)
¢ delta — The delta to remove from the counter
>>> counter = Counter (’application_name’)

(
(
(
(

>>> counter.decrement
>>> counter.decrement
>>> counter.decrement

"counter_name’, 10)
delta=10)
"counter_name’)

increment (subname=None, delta=1)
Increment the counter with delta

Parameters
* subname — The subname to report the data to (appended to the client name)

¢ delta — The delta to add to the counter

delta=10)
"counter_name’)

>>> counter = Counter (’application_name’)
>>> counter.increment (' counter_name’, 10)
>>> counter.increment (

(

>>> counter.increment

4.4. statsd.counter 11
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INDICES AND TABLES
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PYTHON MODULE INDEX
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statsd.client, ??
statsd.connection, ??
statsd.counter, ??
statsd.timer, ??
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